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Finite-Size Scaling in a Microcanonical Ensemble 
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The finite-size scaling technique is extended to a microcanonical ensemble. As 
an application, equilibrium magnetic properties of an L x L square lattice Ising 
model are computed using the microcanonical ensemble simulation technique of 
Creutz, and the results are analyzed using the microcanonical ensemble finite- 
size scaling. The computations were done on the multitransputer system of the 
Condensed Matter Theory Group at the University of Mainz. 

KEY WORDS:  Microcanonical ensemble; finite-size scaling; two-dimen- 
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1. INTRODUCTION 

Monte Carlo (MC) simulations (1) have been applied to a variety of systems 
and an impressive array of results have been obtained for many interesting 
physical properties. Many simulations are by, and largely done for, 
canonical ensemble systems and use pseudo-random number generators in 
an essential way. For many dynamic properties and some static properties, 
in the critical region, it is essential to have a high-quality random number 
generator (RNG). This is often costly in computational time. Some conven- 
tional RNGs also exhibit correlations, leading to subtle errors in the 
results. During the past 5 years, two different types of simulations have 
been introduced which use a deterministic approach in the configurational 
updating procedure and thereby avoid the use of an RNG during the main 
part of the simulation. These are the microcanonical ensemble (MCE) 
simulation method ~2-5) due to Creutz and the Q2R algorithm. (6,7) In the 
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Q2R algorithm, only the total energy-conserving moves are made in the 
updating of spin configurations of a system, whereas in the MCE 
simulation method, one introduces one (or a small number of) demon(s) 
which acts as a .movable heat bath. Each move of the local spins leaves the 
energy of the demons plus the system energy constrained to a constant. If 
the number of demons is small compared to the total number of degrees 
of freedom in the system, one has a simulation of the microcanonical 
ensemble. This idea can also be applied to the molecular dynamics (MD) 
method.~5) 

Simulations are always done for finite systems; the extrapolation 
procedure to determine the behavior of physical properties in the ther- 
modynamic limit has been dramatically improved by the recent advent of 
the finite-size scaling method. (8 11~ Much of this literature is in the 
canonical ensemble framework, where temperature is the important 
independent variable, along with the scaled dimensionsless variable L/~, 
where L is the length related to the finite system under study, which has a 
correlation length 4. Recent developments of the MCE and Q2R simulation 
techniques have made it timely to study once again aspects of ther- 
modynamic and critical fluctuations in a microcanonical ensemble, for 
infinite and finite systems. As is well known, finite-size effects depend on 
the choice of statistical ensemble, although this does not matter in the 
thermodynamic limit. 

The outline of the present work is as follows. The basic theoretical 
foundations are given in Section 2 (subdivided into more than a dozen sub- 
sections), where we first present a straightforward extension of ther- 
modynamic scaling ideas to a microcanonical ensemble and then construct 
the scaling relations for both thermal and magnetic properties. These then 
naturally lead to the corresponding extension of finite-size scaling relations 
for a microcanonical ensemble, where the scaled variable L/~ plays an 
important role. In the microcanonical ensemble, the intensive entropy 
density s and the magnetic field h are the natural choice for the pair of 
independent thermodynamic variables. In various scaling relations, the 
exponent a (related to the divergence of the heat capacity Ch near the 
critical point) figures prominently. We conclude Section 2 (Section 2.14) by 
considering the example of a 2D Ising system. Here Ch diverges 
logarithmically ( ~ 0 )  and much is known analytically both for finite 
systems (~2) and in the thermodynamic limit. (13'~4) Also, there has been a 
detailed numerical study for its thermal and magnetic properties as a 
function of the system size in a canonical ensemble setting. (15) In 
Section2.14, we propose how the finite-size scaling variable L/~ can be 
practically implemented for the 2D Ising model. 

In Section 3, we present the simulation results for the magnetic 
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properties of a square-lattice Ising system using the MCE simulation 
method; the simulations were done on a multitransputer system and 
programmed in OCCAM. While the minimal use of RNGs in the MCE 
simulation is its distinct advantage, we uncover some of its limitations for 
small-system simulations. The results show that even with a very modest 
computing effort, we can obtain interesting and useful results (like an old 
wine in a new bottle) for the 2D Ising model and at the same time explore 
the finite-size scaling technique for the microcanonical ensemble. We feel 
that this study should pave the way for the application of this 
microcanonical ensemble simulation method to phase transition problems 
in more complicated models of statistical mechanics, where no exact results 
are available for comparison. 

2. F I N I T E - S I Z E  S C A L I N G  IN A M I C R O C A N O N I C A L  E N S E M B L E  

2.1. Pre lude  

We consider magnetic systems with an Ising model as a prototype and 
measure various energies in units of a characteristic constant energy, like 
the near-neighbor interaction constant J0; we also set the Boltzmann's 
constant to unity, e.g., temperature T is (/~Jo)-1 in more common notation. 
The four intensive variables T, s, m, and h and the four (extensive) 
thermodynamic potentials U, E, A, and G form the basis of any ther- 
modynamic description of magnetic systems. (As far as possible, we use the 
notation from the textbook by Stanley(16); the material relevant to this 
section may be found in Chapters 2 and 11 and Appendix C.) For a 
microcanonical ensemble, the enthalpy function e(s,  h)  - E / V ,  for a system 
having the volume V, is a natural starting point in analyzing ther- 
modynamic relations like de = T ds - rn dh. Since e = u - hm,  we see that for 
the special value h -- 0, the internal energy U and the enthalpy E are equal. 
In the simulations using the MCE method, the total energy of the system 
plus the demon(s), U +  Ua, is constrained to be a constant. For moderately 
large systems and a small number of demons, commonly used in practical 
simulations, (2-5), one has Ua 4. U and the demon energy provides a measure 
of the width of the energy shell within which the system makes a "random" 
walk through its allowed configurations. The total number of the allowed 
states of the system F ( E )  plays the role of the "partition function" in the 
microcanonical ensemble, and its logarithm, the entropy function S, is 
analogous to the free energy, or more precisely ( - A / T ) ,  in the canonical 
ensemble. 
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2.2. Enthalpy as a Homogeneous Function 

In order to generalize the ideas of the, scaling hypothesis used in 
critical phenomena and extend them to the finite-size scaling in a 
microcanonical ensemble, we follow a pedagogically simpler course of 
block spin transformations and homogeneous function postulates, even 
though the full renormalization group "machinery" can be used in prin- 
ciple. At the critical point, T =  Tc, h = 0, m = 0, s = so, e = ec., u = uc, etc. 
One is interested in the behavior of various quantities in the vicinity of the 
critical point. Let t = ( T -  Tc)/Te, s* = s - s=, e* = e - ec, etc. The enthalpy 
function and other thermodynamic potentials have a regular part and a 
nonanalytic part. Both parts are homogeneous functions of the arguments 
and the former is of degree one, reflecting the extensive property of the 
thermodynamic potentials. One may then write 

e(s, h ) =  er(S, O)+ e*(s*, h) (2.1) 

such that at the critical point er(sc, 0 ) = e c  and e*(0, 0 ) =  0. The regular 
part obeys 

er(2s, O) = 2eAs, 0) (2.2) 

and we may postulate that 

e*(2~=s *, 2~h) = 2e*(s*, h) (2.3) 

thereby introducing two exponents a= and a h characterizing the nonanalytic 
part of the enthalpy. 

2.3. Temperature 

The thermodynamic temperature in a microcanonical ensemble is 
obtained from the relation de = Tds - m dh, so that T = (~e/~?S)h. Its value 
Tc at e = e c ,  s = s c ,  is clearly nonzero, which requires us to write 
d e = d e r + d e *  with d e r = T c  ds and d e * = ( T - T c ) d s * - m d h ,  with the 
result To t=  (t?e*/OS*)h and m = -(t?e*/c~h)=.. In the MCE simulation, the 
demon energy distribution reflects the temperature of the system through 
its mean. ~2) In order to get the correct (t?e/Os)h, a proper sampling of the 
entropy fluctuations, i.e., an extensive scan of the system configurations, 
has to be made in the simulation. 

2.4. Objective 

Our objective is to express various critical exponents ~, fl, 7, 6 in terms 
of the exponents a= and ah introduced in Eq. (2.3) and relate a= and ah to 
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the exponents t /and v, which reflect the single characteristic length near the 
critical point. We restrict our attention to systems where the critical 
exponents satisfy the hyperscaling relation and a single characteristic length 
applies. This, of course, is the correlation length ~ for an infinite system; for 
finite systems its role near T C is transferred to L, the system size, and it is 
this aspect that introduces, through the finite-size scaling method, an 
additional scaling variable ~/L in the scaling functions. 

2.5. Exponent a s 

get 
To this end, we differentiate Eq. (2.1) with respect to s* (s = s*+  so) to 

63er().S *, 0) (~e*(2a's*' )ghh) = Z c?e~(s*, O) (?e*(s*, h) 
8(2s*) 8(2~'s *) 8s* 8s* 

The first term on both sides of this equation is equal to 2Tc and we 
conclude that the function t(s*, h) is constrained by the relation 

2 ~ -  lt(2~ss*, 2~hh) = t(s*, h) (2.4) 

in the critical region. Differentiating Eq. (2.1) once again with respect to s* 
leads to similar scaling for the heat capacity Ch, since 

(O2e/~s2)h = (OT/&)h = T/Ch 

Near T~, if the specific heat exponent a is positive, Ch is dominated by its 
diverging piece arising from the nonanalytic part e*. One then can neglect 
the regular part to write 

which identifies (~2e*/~s*2)h as T/C* with C* as the singular part behaving 
as Ch=0 It[ =, for zero field. By two differentiations of Eq. (2.3) with 
respect to s*, we get the relation 

C:(s*,  h ) -  
1 + t(s*, h) 

1 + t()fss *, 2a~h) 

1 + t(s*, h) 
1 + 2 l-~'t(s*, h) 

C*(2ass *, )g~h) 2 (2as 1) (2.5a) 

C,(2a,s, ,  2ahh) 2-(2as 1) (2.5b) 

where we have used Eq. (2.4) to go from (2.5a) to (2.5b). It is now possible 
to extract the relation between the heat capacity exponent e and the scaling 
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exponent  as, by setting h = 0 and 2 = (s*) 1/u~ in Eqs. (2.4) and (2.5). F o r  
c~ >~ 0, we anticipate as ~< 1 and neglect the terms t(s*, h) and 21 a't(s*, h) 
as small ( compared  to 1) in Eq. (2.5b) and get f rom Eq. (2.5b) 

c?,(s*, 0) = ch*(1, 0)(s*) .-2o~)/.~ 

and f rom Eq. (2.4) 

t(s*, 0) = t(1, 0)(s*)  (1 - a,~/~, 

leading to the identification that  

1 - 2 a ~  1 - -  c~ 
= - -  - , :~ > 0 (2.6) 1 - a  s and as 2 - c ~  

2.6. Entropy, Temperature ,  C h, e*, and u* 

We also obta in  as a result the singular behavior  (for c~ > 0) 

Ch(S* , 0 ) =  Ch~(l, 0)(s*)-~z/'(1 :~)_ Ch$( 1, 0) It(S*, 0)] c~ (2.7) 
It(l, 0)]-~ 

identifying the ampl i tude of the heat  capaci ty  and the behavior  of the 
en t ropy  as (for ~ > 0) 

s* = I t(s*,  0)/t(1, 0) ]  1 ~ (2.8) 

For  a logar i thmical ly  divergent  heat  capacity,  as is the case for the 2D 
Ising model ,  a naive setting of ~ = 0  is not to be done. This case is 
discussed in Section2.14. One  m a y  integrate Eq.,(2.7) to obta in  e* as 
follows: since h is fixed at h = 0, and T =  (C~e/c~S)h, we have 

e= T - ~ h  

f rom which we get 

re ~ ~ T/h dT  = T~ Ch dt ~ T c C* dt 

and finally 

e*(s*, 0 ) =  Tc Q*(1,  0) t(1, 0 ) s  , (2.9a) 
1 - ~  

T~C~'(1, O) 
[t(1,  0 ) ]  ~ I t (s*,  0 ) ] '  ~ (2.9b) 
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Note that, since h = 0 ,  e*(s*, 0)=  u*(s*, 0), and both are proportional to 
s* or to (t) 1-~. 

2.7. I '(E) and the Demon Distribution away from Crit icality 

Near the critical point, the number of states of the system allowed by 
the constant-energy constraint in the microcanonical ensemble is related 
to s*. 

Since F(E) = exp(S), we have F(E)/F(Ec) = e x p ( S -  Sc) = exp(Vs*). 
Thus, a calculation of s*, e*, and u* also constitutes a calculation of F(E) 
[relative to F(Ec)] in the neighborhood of the critical point. Away from 
the critical point, it is useful at this point to restate the standard results 
of a thermodynamic fluctuation theory. From e(s, h), one may obtain in 
principle s(e, h). Then, for E<~ Eo <~ E+ AE, i.e., e ~< eo ~< eo + Ae, 

S(Eo, h, V)= Vs(eo, h) 

= v  4e0 ,0)+  ?-/e hAe+Nko~2L ~ 2 +  ' 

+ g eh+ t,?V)eh2+"" 

= v ~ o + ~ + T + 5 - d - ~  - -  

1 m 

For the special choice h = 0, e = u, and Ae = Au, we get 

( 1 1 ) 
S(U, V)=Vs(u ) - -V  So+~Au 2QT~AU2+.. .  

The microcanonical ensemble distribution for the allowed states F is 
uniform and for one of the allowed configurations {.-. }, its probability is 
1IF. (It is zero for disallowed states.) Thus, the probability for the MCE 
system to be in a configuration {---} is 

1 
P ( { . . . } ) = ~ = e x p ( - S )  

=exp --V(so(u)+-~Au 2ChT2(Au)2+ ...) , h = 0  
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Since U +  U d = c o n s t ,  V A u =  - A U a  and we see that the demon  energy 
distribution can be used to measure both  the temperature T and the heat 
capacity Ch of the system. 

2.8. Exponent a h ,  Magnetization, and Susceptibility 

We now return to Eq. (2.3) to determine the magnetic behavior  and 
then relate the critical exponents /3, 7, 0 to ah and as. Since 
(3e*/Oh)s. = - m  and (~?rn/~?h)s. = 7~s, we can differentiate Eq. (2.3) twice on 
h to obtain 

2ahm(2ass *, 2ahh)= 2m(s*, h) (2.10) 

,~ 2ah)~s( ~ass* , ,~ahh ) = ,~ )~s( S*, h)  (2 .11 ) 

Again, we set h = 0 and 2 = ( s * ) -  i/as in these two equations and get 

m(s*, 0) = m(1, 0)(s*) (1 ah)/a, (2.12) 

and 

Zs(s*, 0 ) =  Zs(1, 0)(s*) (2ah 1)/as (2.13) 

In view of Eq. (2.8) and the definitions of the exponents fl and 7, it is 
possible to identify 

and 

/3 = (1 - cO(1 - ah)/as = (2 - :x)(1 - ah) 

7 = ( 2 -  ~ ) ( 2 a h -  1) 

F r o m  these, one can deduce that  

and the scaling equality 

(2.14) 

(2.15) 

a h = ( 2  - a - / 3 ) / ( 2  - a )  ( 2 . 1 6 )  
0 

7 = (2 - c~ - 2/3) (2.17) 

is satisfied. F r o m  Eqs. (2.6) and (2.16), we see that Eqs. (2.12) and (2.13) 
lead to ent ropy dependences of  m and Zs as m ( s * ) ~ ( s * )  ~/(1-~ and 
)~s(s*) ~ (s*) -~/(~-~) with the amplitudes as in Eqs. (2.12) and (2.13). 

Also, for h = 0, s* ~ e* ~ u*. 
Next, by setting s* = 0, 2 = (h) 1/% in Eq. (2.10), we can identify the 

exponent  6 as 

6 = ah/(1 -- ah) = (2 -- c~ -- fi)/fl (2.18) 
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which leads to other known scaling relations involving the exponent ~ (see 
Table 11.1 in ref. 16). 

2.9. Block Spin Sca l ing ,  Cor re la t ion  Length,  and Cor re la t ion  
Funct ion  

In order to extend the above results, valid for infinite systems, to finite 
systems, it is natural to use the coarse graining of the microscopic 
Hamiltonian via the Kadanoff block spin transformation. Consider the 
nearest-neighbor Ising Hamiltonian in d dimensions, 

N 

* =  - J 2 2  s , s , -h  2 s, 
<zz'> z= 1 

where J, h, and ~ are measured in units of a characteristic energy Jo and 
the lattice spacing is set to unity. Such a lattice is coarse-grained by con- 
structing blocks of side L such that ~ >>L >> 1, ~ being the correlation 
length. The original N-spin Hamiltonian is then transformed to an n-block- 
spin Hamiltonian (n = N I L  a) with the block spin defined as 

1 
s i =--SEa s ,  

l ~ i  

Here 5 ~ is an important scale parameter, yet to be determined. In the 
critical region, one assumes that all the spins within a block behave like 
Ising spins; since L ~ ~, all the spins within a block are mostly either all up 
or all down. Thus, after the transformation, the Hamiltonian is still of the 
Ising form but with new renormalized values of the couplings, i.e., 
Xe(J, h) --, ~f(Y, ~). 

Similarly, the (intensive) thermodynamic potentials such as the 
enthalpy function p e r  sp in  are the s a m e  functions but of the new couplings: 

ne*(s  "h ) = n L  % * ( s * ,  h)  (2.19) 

where the transformation (J, h ) ~  (,7, ~) can in principle also provide the 
new values (s*, h ) ~  (~*, h). Comparing to Eq. (2.3), however, one may 
anticipate the result of such an analysis: 

and 

~* = L Y's * = L da's * (2.20a) 

"h = LXh  = La'hh (2.20b) 
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The transformation of the field term in the Ising Hamiltonian is quite 
straightforward and leads us to the evaluation of the scale factor 5O 

5O ~ L (~- d) = Ld(1 ~hl (2.21) 

The transformation of the spin-spin correlation function in zero field 

F(r, s* ) - ( ( S t -  ( S t )  )(Sr - ( S,, ) ) ) 

where ( . . . )  is the average over a microcanonical ensemble, leads to the 
correlation function of block spins 

v(~, ~*)- ( (s,- (s,) )%-  (sj) ) ) 

such that 

F(r, s*) = 5O2/-(~, ~,) 

where the factor 5 ~ arises from the block spin definition 

1 
2fsi = ~ Y~ S, 

lci  

and ? =  r/L. The entropy variable s* is related to ~* as ~*= LY's *=  Lda~s* 
and 5(,2= L2a{a~ 1). Thus, we get 

F(r, s*) = L 2a(ah I)F(r/L, La~'s *) (2.22) 

as a relation [-analogous to Eqs.(2.4), (2.5), (2.10), (2.11)] for the 
correlation function. In a standard way, let us-set  L =  (s*) -1/(aa'l in 
Eq. (2.22) to get 

L(r, s * ) =  (S*)2(1--ah)/a'I'(r/{, 1) (2.23) 

where we identify the correlation length ~ as the single length and infer 
~ (s*) -1/{aas), so that, using Eq. (2.6), we can write 

~ ~ (s*) ~ with ~7= ( 2 -  ~ ) / d ( 1 -  ~) (2.24) 

as the behavior of the entropy dependence of the correlation length in the 
microcanonical ensemble. Since s * ~ t  ~ -  ~; and { ~ t  -~, we get 
v =  ( 2 - e ) / d ,  which is the well-known hyperscaling relation, indicating 
overall consistency in the argument. Next, we let L = r in Eq. (2.22). Then 

i f (r ,  S*)  = r 2a(~h I)F(1, (rs*l/a~') a~*) 

=- r ( d - 2 + n ) F ( r / ~ )  (2.25) 
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where we have used the definition of the exponent ~/. Thus, we can identify 

( d -  2 + r/) = 2d(1 - ah) (2.25a) 

By using Eq. (2.16) for ah in Eq. (2.25) and other relations previously 
obtained, we can get the known scaling relations involving t /as 

(d-2+q)=2d~/(2-:t)=d(2-c~-7)/(2-~)=2d/(6+ 1) = 2/?/v (2.26) 

2.10. Scaled Variables for Inf ini te  Systems 

In Eqs. (2.4), (2.5), (2.10), (2.11), and (2.22) we derived the scaling of 
T, Ch, m, )6 and F(r, s*), respectively. We have utilized them to obtain 
various scaling relations among the critical exponents and have also iden- 
tified the values of the exponents as and ah, respectively, in Eqs. (2.6) and 
(2.16). For the sake of completeness, let us also note that from Eq. (2.10), 
by setting 2 =  Is*[ -1/a' and using Eqs. (2.6) and (2.16), we can get the 
scaled form of the magnetic equation of state for an infinite system in a 
microcanonical ensemble as 

m(s.,h)=,s.j~/(,_~)r~( S* h )  (2.27) 

from which the scaled magnetization and scaled magnetic field emerge 
naturally as 

m = Is*l-~/(1-~)m(s*, h) (2.28a) 

~ = h  Is*l p~/~x ~ (2.28b) 

These are consistent with the results of a similar analysis in a canonical 
ensemble due to Eq. (2.8). 

2.11. Finite Systems and the Probabil i ty Distr ibut ion Function 
(PDF)  for the Order Parameter  

The above results generalize in a straightforward way to finite systems. 
We follow the analysis of ref. 10. For an Ising Hamiltonian 

~ = - J ~ 2 S ,  S , , -h2S  z 
( / l ' )  / 

the microcanonical ensemble distribution is 

PMc({S,})=fi(Eo--W[{St}] ~ ,5(Eo- Y{~[ {S,} ]) (2.29) 
E<~ Eo<~E+ A E  

where the enthalpy E o is constrained to be within a narrow range between 
E and E + AE, the numerator is a Kronecker delta of the argument shown, 

822/53/3-4-17 



806 Desai et  al. 

and the denominator is simply the total number of allowed states of the 
system F(E) as discussed in Section 2.7. In practical terms, PMc({St}) is 
simply a uniform distribution with a value 1/F(E) for any allowed con- 
figuration {St} and zero for the disallowed ones. In ref. 10, the role of the 
reduced distribution for one block spin s~ has been discussed in detail. Here 
we consider the case of the entire system of volume L d= N as one block 
with periodic boundary condition and define the appropriate reduced 
distribution as 

I( )/ PL(6, h) = 6 t~=l S t -  N6 (2.30) 

where ( . . . )  is an average over the distribution PMc- For a similar dis- 
tribution, but appropriate to a canonical ensemble, of a finite Ising square 
lattice, a number of results are given by McCoy and Wu and discussed in 
detail in Chapter XIII of ref. 14 [-see particularly Eqs. (1.8), (3.4), and 
(3.23) and Fig. 13.1]. These results, obtained with a saddle point 
approximation, show that (1) for T< To, Pc(6, 0) is a sum of two dis- 
placed Gaussians (displaced around the equilibrium magnetization values), 
(2) for T >  Tc it is a single Gaussian centered zero, and (3) at T =  T~., it is a 
very sharply peaked function of the form A e x p ( - B  ]61~+1), where 6 = 15, 
and A and B are functions of temperature, N, 6, and K [at Tc, the 
magnetization behaves like m(Tc, h)~ K sgn(h)Ihl 1/~, which defines K]. In 
general, reduced distributions such as PL(6, h) are difficult to obtain 
analytically, as illustrated in ref. 14 for the Ising square lattice. It is 
therefore useful to assume that close to To, PL(6, h) satisfies a finite-size 
scaling ansatz, as L --, oo, 

( ~ , L a ' h L t J ' ~ / v )  (2.31) PL(ff, h) = L ~/~ ~ P a6L r 

Here.a, a' are (nonuniversal) scale factors, while P is a universal function 
of its arguments, and the constant Co ensures proper normalization of the 
total probability being unity. In postulating this form for PL(6, h), we have 
used its general properties as discussed in ref. 10 and assumed that they are 
ensemble independent. In most of what follows, we shall restrict ourselves 
to h = 0 and denote PL(~, 0) by PL(6). 

2.12. M o m e n t s  of the PDF 

We define the moments of the PDF PL(~) as 

(6k)l~ = - d6 6kPL(6) 
oO 

= L-kB/V(akCo) 1 dz z~P(z, L/i) 
- - o o  

(2.32) 

(2.32a) 
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where the integral, to be denoted by fk(L/~), is a universal function of L/~ 
for each value of k. PL is an even function of ~ and thus all the odd 
moments vanish. The zero-field magnetization is ([(Y[)L and can be related 
to PL(#) as 

m = (I,~1 >L = d~ ~P~(~) 

= L-~/v(aCo)-1 fo ~ 

- L-"/Vrh(L/~) 

dz zP(z, L/~) 

(2.33) 

which leads to a finite-size scaling ansatz for the (spontaneous) 
magnetization 

m(s*, L) L ~/~ = m( L/~) = rhl(L(s*) ~) (2.34) 

This form is seen to be consistent with Eqs. (2.28a) and (2.24), since from 
these equations, we get 

m I s * [  - / / / ( 1  - :o  ,~, m~fl/(1 :~)~ ~ m~/v ~ mL~/, , 

for finite systems. Similarly, the consideration of the second moment (82 )L  
leads to the finite-size scaling ansatz for the susceptibility as 

x'~ = LaE ( 6 2 ) c -  (1~1)~] 

= L d -  2 ~ , L ( L / ~  ) 

Thus, 

- L ~ ' L ( L / ~ )  

Z's(S*, L) L v/~= ~(L/~.)= 7G~(L(s*) ~) (2.35) 

Note that g's tends to the bulk susceptibility for L -~ oo only in the ordered 
phase; in the disordered phase, the proper definition rather is 
)G=La( f f2 )L ,  which has the same scaling structure. Also, the cumulant 
function U z - 1  ( ~ 4 ) L / 3  -2  2 

- ( a ) L  is a universal function of the scaling 
variable (L/ i )  = (L/~o)(S*) ~ ~ L(s*) ~, i.e., UL(s*) -- U(L/~). 
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2.13. The Scaled Variable L[~ 
Equations (2.34) and (2.35), as well as the universal cumulant function 

U(L/~), show that in zero-magnetic-field-limit, m, ;~s, and UL can be scaled 
and expressed as functions of a single variable (L/~). This variable can be 
expressed in terms of the intensive entropy s* as done above, in terms of 
the temperature t, using Eq. (2.8), or in terms of the intensive enthalpy e*, 
using Eq. (2.9a). For h = 0, e * =  u*. We get 

L L =_L 0)Iv= L r 
T : (o   oL,(1,0)j Too 

L[ 1 - ,  L 
~o T o C * 6 ~ - ~ t ( l ' O )  (e*)~==-(e*)~ 

where v - - ( 2 - ~ ) / d ,  F = v / ( 1 -  ~), and ~o, ~'o, ~o are the amplitudes of the 
correlation length in the three representations. In the simulations using the 
MCE technique, one has the system size L and the total energy U+ Ud 
prescribed and during the course of the simulation, one can determine both 
the mean system energy and the mean demon energy. For the simulations 
with one demon, since L d ~  1 in most instances, the intensive system energy 
u is practially the same as its initial value when the demon energy is chosen 
to be zero. Since the value of u at the critical point u c is either known or is 
determined in the course of simulations, it is straightforward to construct 
the scaled variable L(u*) ~ in practice. For the case of a 2D Ising system, 
some of the results of this section have to be refined due to the logarithmic 
divergence of Ch instead of the t %type behavior. 

2.14. The Square Lattice Ising Model and the 
Scaled Variable L/~ 

For the 2D Ising model, f l=1/8 ,  7=7/4 ,  and v = l .  Due to the 
logarithmic heat capacity, which implies ~ = 0, naively ~ = v/(1 - ~ )  implies 
" ~  v = 1. The scaled variable L/~ in the canonical ensemble becomes 
L/~ = (L/Go) t ~ ~ Lt, and would become ~ L u *  = L ( u -  Uc). This, however, 
is an inappropriate scaling variable for the 2D Ising model. A renor- 
malization group analysis, including corrections to scaling, ~17) is 
appropriate for a microcanonical ensemble. Here we take, however, an 
empirical approach: In place of Eq. (2.7), where we had Ch ~ t -~, we know 
that for the 2D Ising model [see Eq. (5.3.58), p. 95, ref. 14] Ch is of the 
form 

C*(t, O) = Ax - A2 In [tl (2.36) 
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, T ' From this, using e* ~- c to C* dt, we get 

e * ( t , O ) = T c [ ( A l + A 2 ) t - A 2 t l n t ] ,  t > 0  (2.37) 

which is not of the form of Eq. (2.9b) with :~=0. Similarly, by using 
s* ~_ ~o dt C*/(1 + t), one can show that Eq. (2.36) implies 

( _ t )  ,,+1 
s*(t, 0 )  ~- A 1 ln(1 + t) -- A2(ln t)[ln(1 + t)] - A2 2, (2.38) (n + 1 )2 

which has a singular part  [for small t, ln(1 + t ) ~  t] of the form - A 2 t  In t; 
this again is not of the form of Eq. (2.8) with c~=0. Similar differences in 
other quantities, such as r [Eq. (2.24)], where the exponents ~ and as enter 
in the analysis above, are expected. The quantities related to a h seem to be 
unaffected. Our objective is to construct a scaled variable L/r as a function 
of u * =  e*. This we do by noting the analytical results of Ferdinand and 
Fisher (12) (FF) for the Ising square lattice systems. For  an L x L system, 
the intensive internal energy u(L)  is given by FF and is of the form 
[Eqs. (4.13) and (4.15) of ref. 12-1 

4 In L A(r)  
u(L, t) = +uc(L)  + - r - -  + - -  (2.39) 

L L 

where r = Lt, which is then seen to be an inappropriate scaling variable for 
u in a canonical ensemble. In Eq. (2.39), A(r) is of the form z In Izl and is 
thus zero at r = 0; the critical value uc(L) for the internal energy of a finite 
L x L Ising lattice is computed [-Eq. (4.15), ref. 12] to be, in the canonical 
ensemble, 

uc( L ) = u~ - 0.622440/L (2.40) 

where u C = - , , ~  is the infinite lattice value at T c, which is also known: 
T C = 2.269185 .... F rom Eq. (2.39), we can write 

A(z)  u ( L , T ) - u ~ ( L )  4 1 n L _  ~ (2.41) 
t 7c 

The first term on the right-hand side renders the left-hand side a function 
of both variables L and t instead of a single scaled variable r; but if we sub- 
tract from the left-hand side its value at some noncritical temperature To 
which is far away from T~, we remove the unscalable term (4/~z)In L, 
which depends only on L. Thus, we have the combination ~ defined as 

u =_ u(L, t) - u~(L) u(L, t o ) -  uc(L) 

T -  T~ To - T~ 

1 A(fro)] 1 1 Izl (2.42) 
- T c ( ~  ~) to / ~ ~  nlvol 
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such that it is a function of the scaled variable ~ -= Lt ~ L/{. At the critical 
point ~ = 0, u defined above becomes infinite and therefore it is useful to 
use (I/u), which is like ({/L), as the scaled variable in the energy represen- 
tation of the microcanonical ensemble for a system with a logarithmically 
diverging heat capacity. Although we have obtained these results from a 
discussion in the framework of the canonical ensemble, we suggest that 
they can be carried over into the microcanonical ensemble as well: the 
general scaling structure should have the same form there, although the 
explicit scaling functions certainly differ from those of the canonical 
ensemble, where t is eliminated in favor of u by means of Eq. (2.42). 

2.15. The Case of Negative Specific Heat Exponents 

So far, we have assumed that the specific heat diverges at the phase 
transition. However, it is well known that for some cases of practical 
interest (such as the three-dimensional Heisenberg model) the specific heat 
exponent c~ is negative. Then, the regular part of the specific heat must not 
be neglected near the critical point in comparison with the singular one, 
which actually vanishes there. Thus, we have 

( ~2e ~ T (~2er" ~ (~2e*'~ Z (2.43) 

0s.2)  = = + = + c t  

Writing er=Tcs*+�89  ..., where F is some constant, we find, 
instead of Eq. (2.4), using Eq. (2.3), 

(eer) (ee*) 
T =  To(1 + t) = \&*,lh + \as*Jh 

1 O 
= To(1 + Fs*) +2~s* e*(2~ss*' 2ahh) (2.44a) 

and hence 

t = tr + t*(s*, h) = Fs* + 2 as lt*(2ass*, )fhh) (2.44b) 

replaces Eq. (2.4), with t * =  (1/Tc)(~?e*/~?s*)h. Similarly, Eq. (2.43) yields, 
with the help of Eq. (2.3), 

( OZe) = [V+2(2,,-l~&*()j,s, ,2ahh) 1 as*ZJh Tc as* (2.45) 
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and hence the specific heat becomes 

I 1-1 T 2(2as-1) &* (2ass,, 2ahh) Ch =--~ F +  &* 

~t* ~ F - I _ F  2/~ (2as 1) (2~,s*,2ahh) (2.46) 
~?s* 

As a result, we can identify the regular and singular parts of the specific 
heat as 

Crh=F 1, C~(s*, h) =~,(2a'-llC*(~.ass*, 2ahh) (2.47) 

but note that the sign of the scaling power of 2 in front of C* on the rhs of 
this equation is just the reverse of Eq. (2.5). As expected, the singular term 
in Eq. (2.47) has the same structure as Eq. (2.5); this implies 

C*(s*, 0 ) =  Ch*(1, 0)(s*) (1 - 2a,)/a~ (2.48a) 

t(s*, O) = Fs* + t*(1, O) s *(1 -~s)/~, , Fs* (2.48b) 
s *  ~ O  

Since c~ < 0 corresponds to a, < 1/2, actually the first term in Eq. (2.48b) is 
the dominant one. 

From Eqs. (2.48a), (2.48b) it follows Eq. (2.6) is replaced by 

:~= - (1  -2a,) /a~,  a~= 1 / (2 -  c~) (2.49) 

and the specific heat expressed as a function of temperature becomes 

Ch = j~--I ..}. C*(1, O)(t/V) -~, ~ < 0 (2.50) 

instead of Eq. (2.7), and similarly Eq. (2.8) is replaced by 

s* = F l [ t -  t*(1, O)(t/r) (1 ~)] (2.51) 

At the same time, a linear term in t or in s* appears in the energy as well, 

E 1;_; ] e - e ~ = T ~ f o C h d t = T ~  F - l t + C ~ ( 1 , 0 )  F ~ (2.52a) 

or 

- ~ - ~  s .1 ~ (Z52b) e - e ~ = T ~  s*+ C*(1,0) I _ ~  F 

where only the leading-order terms have been kept. Thus Eqs. (2.52a) and 
(2.52b) replace Eqs. (9a) and (9b). 
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Since Eq. (2.49) is the same scaling power that appears for the tem- 
perature in the canonical ensemble, as it must be, since asymptotically t 
and s* are linearly related [Eq. (2.48b)], scaling relations such as 
Eq. (2.17) are again satisfied. 

3. AN APPLICATION TO THE 2D ISING MODEL 

In this section we describe a simulation of the square-lattice Ising 
model using the MCE technique, (2) present the results obtained for finite 
L • L lattice with L = 8, 10, 20, 25, 30, and 60, and present the finite- 
size scaling analysis of these results using the formulation described in 
Section 2. 

3.1. Simulation of the 2D Ising Model Using Transputers 

The MCE simulation of an L x L square lattice Ising system was done 
using a multitransputer system made up of tbur transputer chips on two 
boards, installed in an IBM PC-AT. The Inmos transputer chip is a 32-bit 
CMOS microprocessor which is specifically designed to support parallel 
processing in large networks of interconnected processors. We have 
implemented the MCE algorithm (5) in OCCAM at the simplest and most 
rudimentary level. The four-transputer system is configured such that 
input-output between it and the PC-AT occurs through one of the four 
(host) chips and the other three (slaves) used in parallel to generate three 
simulations simultaneously. For a detailed discussion see ref. 18. Without 
any sophistication (e.g., multispin coding) of complex programming, we are 
able to obtain a speed of about 5.6#sec per spin flip. In the MCE 
simulation, we use one demon which visits the L x L lattice (with periodic 
boundary conditions) sites sequentially. At each site, the local near- 
neighbor spin configuration is checked and the spin is flipped deter- 
ministically, as is the energy change of the system given to the demon, 
provided that in the process the demon energy does not become negative. 
Initially, the demon energy is zero and the system energy is the initial total 
prescribed energy. One "Monte Carlo step" (unit of time) is defined to be 
the time taken by the demon to visit all the L 2 sites of the lattice once. 
Typically, for a given value of the system parameters (L, U), one generates 
configurations for (m +n)  Monte Carlo steps, discards the first m steps, 
and constructs averages for various physical properties from the remaining 
n configurations, skipping every ( n o - 1 )  steps; i.e., one has averages over 
n/no Monte Carlo steps. In our simulations typically m = 1000, no = L, and 
n/no=5000, with selected data points with n o = L  2 and n/no= 10,000. 
Without a great deal of effort in creating a sophisticated program, the four- 
transputer system took an overnight run of approximately 36,000 sec to 
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generate a typical set of 3(L, U) data points with L = 6 0 ,  m =  10,000, 
no = L, and n/no = 10,000. Our purpose here is not to show that the known 
analytic results for the 2D Ising model can be reproduced with great 
accuracy, but to demonstrate the use of a multitransputer system (we 
have barely begun to tap its potential!) and apply the finite-size scaling 
technique to the MCE simulation results. 

A study of the dynamic correlations--time-dependent magnetization 
autocorrelation function--using the same program and the transputer con- 
figuration described above is reported elsewhere(~81; there, using the finite- 
size scaling technique, we have obtained (1) the scaled magnetization 
autocorrelation function at zero time, which is related to the susceptibility 
Z, (2) the dynamic critical exponent z for the 2D Ising model in 
equilibrium, and (3) the scaled relaxation time as a function of the scaled 
temperature v. Here, in the next subsection, we describe the results for 
the static magnetic properties of the 2D Ising model--magnetization m, 
susceptibility Z, and the cumulant U, using the MCE simulation. 

3.2.  R e s u l t s  o f  t h e  M C E  S i m u l a t i o n  

For the Ising square lattice (L x L), the ground-state energy is -2JL 2 
and the disordered state energy is 0. Thus, the intensive energy u measured 
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in units of J varies between - 2  and 0. In Fig. 1, we show the 
magnetization m as a function of ( - u )  for L = 8, 20, 30, and 60; in Fig. 2 
we display the susceptibility Z as a function of ( - u )  for L =  8, 10, 20, 25, 
30, and 60. As expected, the magnetization is smooth and continuous 
through the critical point energy - u c  = +x/~ ,  since we have finite systems 
which do not have any phase transition, in principle. The behavior of the 
susceptibility also shows peaks with finite maximum values Zmax' It is seen 
that both Zmax and the peak positions Urea x depend on the system size. 
Thus, the effective critical point occurs at an L-dependent Umax(L ). In 
Fig. 3, we show these dependences on L: Fig. 3a shows Umax(L ) and Fig. 3b 
shows Zmax(L). Within the error bars, Um~x is a linear function of 
L 11v = 1/L and extrapolates to the expected value of - x / ~ .  From Fig. 3b, 
which is a double logarithmic plot of Zmax versus L, we find a slope of 
1.8 ___0.1, whereas the expected value 7/v is 1.75. By using the relation T(u) 
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Fig. 3. 
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(refs. 13 and 14), we estimate that the effective temperature (for finite 
systems) T~(L) is of the form 

1.02 _+ 0.09) 
TZ~(L) = T~ (1 4 L ' 

It compares favorably with earlier numerical work of Landau/~5) It is also 
to be contrasted with Eq. (2.40), which is the analogous result for the heat 
capacity in the canonical ensemble. 

3.3. Cr i t ique  of  the  M C E  S imula t ion  T e c h n i q u e  

During the MCE simulation, the demon energy distribution gives the 
system temperature. (2) In our study of dynamic correlations, (~8) we have 
found that in order to reproduce the analytically known (13'~4) temperature 
T(u) accurately to four significant figures, one needs to average over about 
2.5 million configurations for L 1> 20. For  smaller systems, even this is not 
sufficient. In the results reported here, we use the analytic relation for T(u) 
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to obtain the temperature from the system energy u. Even though the 
system energy is an independent variable, its value can be prescribed only 
within the fluctuation ( u a ) - ( U d ) / L  2. For small systems (e.g., L = 8 ) ,  
(ud)  can be a significant fraction of u. For  L >~ 20, this is not a significant 
impediment in performing the simulation. The advantage of using the 
finite-size scaling technique is that one need not do simulations on very 
large systems to study fluctuations and correlations. The above remarks 
show that in the MCE simulations, the data reliability is impaired if the 
systems simulated are too small. An advantage of the MCE simulation 
technique is its computational efficiency and speed, since the use of RNGs 
is (almost) eliminated. For  large systems, near the critical point, another 
general disadvantage for all simulations is the tong dynamic correlations (18) 
present in the system. This requires that no ~ L z, where z is the dynamic 
critical exponent. Our data for L = 60 with n o ~ L show a systematic trend 
indicating an insufficient statistical averaging. In doing the finite-size 
scaling, we have used the data with L = 20, 25, and 30. 

Another problem which matters for very large lattices in principle, but 
for small enough lattices in practice, is the fact that due to the perfect 
deterministic character of the algorithm, there will be a finite (albeit very 
large) recurrence time where the initial spin configuration occurs again and 
at the same time the demon energy is zero, and from there on the 
simulation reproduces itself. Increasing the observation time beyond the 
recurrence time would make no sense, which also implies that the 
"statistical" error cannot be made arbitrarily small, and the algorithm as it 
stands perhaps suffers also from a lack of ergodicity (it is not clear that 
within the recurrence time all states consistent with a chosen total energy 
are actually reached). 

An obvious approach to remedy this situation would be to introduce 
another element of stochasticity into the algorithm: e.g., after every n' step 
(with no ~ n '~  n) we move the demon not to the next lattice site as usually 
done, but to a randomly chosen lattice site anywhere in the system. This 
procedure would not affect the efficiency of the algorithm much. In prac- 
tice, we have not yet implemented this procedure (or other alternatives to 
eliminate this problem), because it is clear that the recurrence time is much 
larger than the observation times used here for the values of L and system 
energies studied. 

3.4. Finite-Size Scaling Analysis of  the MCE Simulat ion Data 

We apply the results of Section 2 l-Eqs. (2.42), (2.35), (2.34)] to the 
results discussed in Sections 3.2 and 3.3. In Fig. 4, we show the cumulant 
Uc as a function of T for L = 8, 10, 20, 25, and 30. Here we use the exactly 
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known (13) relation between u and T appropriate  for an infinite lattice to 
transform from dependences as a function of u to dependences as a 
function of T. In principle, there is also a finite-size effect in the actual 
system temperature T =  T(u, L), which follows from the demon energy dis- 
tribution, but in practice this size effect hardly exceeds the statistical 
error (xS) and hence is disregarded here. We expec(~~ a common intersec- 
tion point at T c. The data for L = 20, 25, and 30 do show such a crossing 
around T ~  2.27, which is quite close to T~. = 2.269185 .... The value of the 
fixed point cumulant U*CE (in the microcanonical ensemble) is about 
0.645 + 0.01, where the error is simply an estimate of the scatter of the data 
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points; this value is higher than other previous estimates of U~E (in the 
canonical ensemble) for systems in the 2D Ising universality class, 01J9) 
namely U * ~ 0 . 6 1 ,  indicating possible systematic errors in the second 
significant figure due to the correlations related to the decay of magnetic 
fluctuations; one needs to choose no N L 2, and do longer runs, yielding 
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better averaging. Since finite-size effects differ in different ensembles, we 
suspect that the difference between U*CE and U*E is a real effect and not 
an artifact of corrections to finite-size scaling. In Fig. 5a, we show the 
universal function U(r) and in Fig. 5b, the corresponding universal 
function U(1/u). In Fig. 6a, similarly, we show the scaled magnetization m 
as a function of r and in Fig. 6b as a function of 1/~}. Finally, in Fig. 7a, we 
give ~, with respect to T and in Fig. 7b, with respect to 1/~t. Within the 
scatter of the data the scaling described in Section 2 appears to be obeyed. 
[-in obtaining the scaled functions in Figs. 5b, 6b, and 7b, we have used the 
noncritical point (To, uo) = (2.817, -0.9),  where Uo = u(T0).] 

4. S U M M A R Y  

In this paper, we have extended the technique of finite-size scaling (8 11~ 
to systems appropriate to a microcanonical ensemble. Recent simulation 
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Fig. 8. Absoiute value of the magnetizat ion plotted versus temperature for three system sizes 
in the canonical ensemble (c) and in the microcanonical ensemble (mc), Canonical  ensemble 
data are due to Landau/2~ Full and broken curves are guides to the eye only: full curves are 
drawn through the canonical ensemble data, while the broken curve is drawn through the 
microcanonical results for L = 20. 
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algorithms (2'6) which use deterministic Ising dynamics correspond to the 
microcanonical ensemble. Using one of them, (2~ we have simulated an Ising 
square lattice system on a multitransputer system and demonstrated how 
the finite-size scaling method could be applied to microcanonical ensemble 
systems. 

One rather basic question is not yet finally answered by the present 
work: What is the nature of the difference between finite-size effects in dif- 
ferent ensembles? Suppose we take our present results for magnetization 
m(u, L) and T= T(u, L) to eliminate u in favor of T to construct a function 
m(u(T,L),h)=m'(T,L) in the microcanonical ensemble: there is no 
reason, in our opinion, to expect a priori that m'(T, L) agrees quantiatively 
with m(T,L), the magnetization calculated in the canonical ensemble. 
Unfortunately, a comparison of the present data for m'(T,L) with 
literature data (15) for m(T, L) shows that the differences between m and m' 
hardly exceed the statistical errors; see Fig. 8. As indicated for L = 20 by 
the dashed curve, m'(T, L) seems to vary a little bit steeper than m(T, L) 
(full curve), but both curves intersect each other close to their inflection 
points, and there the systematic differences are hard to resolve accurately. 
This problem should be studied further by future high-precision work. 
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